
J Math Chem (2008) 44:405–417
DOI 10.1007/s10910-007-9317-8

ORIGINAL PAPER

Resistance distance local rules

Haiyan Chen · Fuji Zhang

Received: 22 June 2006 / Accepted: 10 August 2007 / Published online: 1 November 2007
© Springer Science+Business Media, LLC 2007

Abstract In [D.J. Klein, Croat. Chem. Acta. 75(2), 633 (2002)] Klein established
a number of sum rules to compute the resistance distance of an arbitrary graph, espe-
cially he gave a specific set of local sum rules that determined all resistance distances
of a graph (saying the set of local sum rules is complete). Inspired by this result, we
give another complete set of local rules, which is simple and also efficient, especially
for distance-regular graphs. Finally some applications to chemical graphs (for exam-
ple the Platonic solids as well as their vertex truncations, which include the graph of
Buckminsterfullerene and the graph of boron nitride hetero-fullerenoid B12 N12) are
made to illustrate our approach.

Keywords Resistance distance · Laplacian matrix · Distance regular graph

1 Introduction

The resistance distance is a novel distance function on a graph proposed by Klein and
Randic [1]. The term resistance distance was used because of the physical interpreta-
tion: one imagines unit resistors on each edge of a graph G and takes the resistance
distance between vertices i and j of G to be the effective resistance between verti-
ces i and j , denoted by �i j . Similar to the long recognized shortest path distance,
which is denoted by d(i, j), the resistance distance is also intrinsic to the graph,
not only with some nice purely mathematical and physical interpretations [2,3], but
with a substantial potential for chemical applications. In fact, for those two distance
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functions, the shortest-path might be imagined to be more relevant when there is
corpuscular communication (along edges) between two vertices, whereas the resis-
tance distance might be imagined to be more relevant when the communication is
wave- or fluid-like. Then that chemical communication in molecules is rather wave-
like suggests the utility of this concept in chemistry. So in recent years, the resistance
distance was much studied in the chemical literature [4–15]. It is found that the resis-
tance distance is closely related with many well known graph invariants, such as the
connectivity index, the Balaban index, etc. This further suggests the resistance dis-
tance is worthy of study. In this paper, following the notations used in [16], G denotes
a (molecular) graph, the vertex (or site) set is V and the edge (or bond) set is E, N is
the number of vertices. Then the Laplacian matrix L = D − A is N × N , where A
is the adjacency matrix of G and D is the diagonal matrix in which the i-th diagonal
entry is �i (the degree of vertex i). I denotes the identity matrix, �is the matrix with
all its elements being 1/N . In [1], the authors gave general sum rules for resistance
distances:

Theorem 1.1 ([1,16]) For G an N-vertex connected graph and an arbitrary N × N
matrix M,

∑

i, j∈V

(L M L)i j�i j = −2tr(M L). (1)

Here tr denote the trace operation, which sums over the diagonal elements of the
matrix.

Using this general sum rule, for different particular choices of M , we can obtain dif-
ferent relations for resistance distances. For example, let M = � and �2, respectively,
where � is a Moore-Penrose generalized inverse of L satisfied L� = �L = I − �,
then (1) led to

∑

{i, j}∈E

�i j = N − 1; (2)

∑

i< j

�i j = N
N∑

k=2

1

µk
. (3)

where 0 = µ1 < µ2 ≤ · · · ≤ µN are the eigenvalues of L .
In fact, this two particular results were long ago established by using different

ways of reasoning, the first one reported in [17] and [18]; the second one, the left hand
of which is the well known “Kirchhoff index,” reported in [7] and [12]. In paper [16],
by choosing M as the matrix Oab which has all elements 0 except the (a, b)th element
which is 1, Klein obtained a complete set of local rules for resistance distances, that is
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Theorem 1.2 ([16]) Let a, b ∈ V in a connected graph. Then

�−1
a

∑

i, j∈n(a)

�i j =
∑

i∈n(a)

�ia − 1, (4)

�a�b�ab−�a

∑

j∈n(b)

�aj−�b

∑

i∈n(a)

�ib+
∑

i∈n(a)

∑

j∈n(b)

�i j = 2δa∼b, a �= b, (5)

where δa∼b is 0 unless a and b are neighbors in which case it takes the values 1, where
n(a), n(b) denote neighbor sets of a, b respectively.

Furthermore the relations in (4) and (5) determine all the �i j , if it is understood
that �i j = � j i and �i i = 0 for all i, j ∈ V . In section two, we will give another set
of more local sum rules, by which we can easily get (4) and (5), so it is complete too.
In Sect. 3, using these new local sum rules, we compute the resistance distances of
some graphs.

2 A complete set of local sum rules for resistance distances

Before we give the main results of this section, we first introduce some notations. If α

denotes a N -dimensional column vector, then α′ denotes its transpose. (α, β) Denotes
the ordinary vector inner product.

Theorem 2.1 Let G = (V, E) be a connected graph with N (N ≥ 2) vertices. Then

(i) For any a, b ∈ V (a �= b),

�a�ab +
∑

i∈n(a)

(�ia −�ib) = 2;

(ii) For any three different vertices a, b, c ∈ V ,

�c(�ca −�cb)+
∑

i∈n(c)

(�ib −�ia) = 0.

Proof Let l1, l2, . . . , lN denote the column vectors of the Laplacian matrix L , then
l1 + l2 + · · · + lN = 0. In view of the connectivity of the graph, the dimension of the
subspace spanned by l1, l2, . . . , lN is N −1. So from the knowledge of linear algebra,
for any a, b ∈ V (a �= b) there exists a vector α such that (α, la) = 1, (α, lb) = −1
and (α, li ) = 0 for i �= a, b. Let M be the matrix which has all elements 0 except the
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c-th row which is α′, then

M =

⎛

⎜⎜⎜⎜⎜⎜⎝

0′
...

α′
...

0′

⎞

⎟⎟⎟⎟⎟⎟⎠

So

M L =

⎛

⎜⎜⎜⎜⎜⎜⎝

0′
...

α′
...

0′

⎞

⎟⎟⎟⎟⎟⎟⎠
(l1, l2, . . . , lN ) =

a
↓

b
↓⎛

⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 1 · · · −1 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎠
← c

L M L =
⎛

⎜⎝
l11 l12 · · · l1N

· · · · · · . . . · · ·
lN1 lN2 · · · lN N

⎞

⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 1 · · · −1 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎠

=

a
↓

b
↓⎛

⎜⎜⎜⎝

0 · · · l1c · · · −l1c · · · 0
0 · · · l2c · · · −l2c · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · lNc · · · −lNc · · · 0

⎞

⎟⎟⎟⎠

∑

i, j∈V

(L M L)i j�i j =
N∑

i=1

lic(�ia −�ib).

With the realization that one has

−2tr(M L) =
⎧
⎨

⎩

0, c �= a, b;
−2, c = a;
2, c = b.
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Recalling lii = �i , li j = −1 for i ∼ j , and li j = 0, otherwise , so by Theorem 1.1,
when c �= a, b, we have

�c(�ca −�cb)+
∑

i∈n(c)

(�ib −�ia) = 0,

when c = a or c = b, we have

−�a�ab +
∑

i∈n(a)

(�ib −�ia) = −2,

�b�ab +
∑

i∈n(b)

(�ib −�ia) = 2.

So that the results are obtained. 	

In fact, (ii) can be easily derived from (i), for c �= a and c �= b, as we have

�c�ca +
∑

i∈n(c)

(�ic −�ia) = 2.

�c�cb +
∑

i∈n(c)

(�ic −�ib) = 2.

So (ii) holds naturally. Now we will show that Klein’s local sum rules—Theorem 1.2
can also be deduced from (i). So by the completeness of relations in Theorem 1.2, we
have the following theorem:

Theorem 2.2 For a connected graph G, the relations

�a�ab +
∑

i∈n(a)

(�ia −�ib) = 2; ∀a, b ∈ V, (6)

determine all �i j , that is, this set of local sum rules is complete.

Proof For any a ∈ V , the left hand side of equality (4) is

�−1
a

∑

i, j∈n(a)

�i j = 1

2
�−1

a

∑

i∈n(a)

∑

j∈n(a)

�i j

= 1

2
�−1

a

∑

i∈n(a)

⎛

⎝�a�ia +
∑

j∈n(a)

�aj − 2

⎞

⎠

123



410 J Math Chem (2008) 44:405–417

= 1

2

⎛

⎝
∑

i∈n(a)

�ia +
∑

j∈n(a)

�aj − 2

⎞

⎠

=
∑

i∈n(a)

�ia − 1.

For equality (5), if a is not a neighbor of b, then

∑

i∈n(a)

∑

j∈n(b)

�i j =
∑

i∈n(a)

⎛

⎝
∑

j∈n(b)

�i j

⎞

⎠ =
∑

i∈n(a)

⎛

⎝�b�bi +
∑

j∈n(b)

�bj − 2

⎞

⎠

= �b

∑

i∈n(a)

�bi +�a

⎛

⎝
∑

j∈n(b)

�bj − 2

⎞

⎠

= �b

∑

i∈n(a)

�bi +�a

⎛

⎝
∑

j∈n(b)

�aj −�b�ab

⎞

⎠

= �b

∑

i∈n(a)

�bi +�a

∑

j∈n(b)

�aj −�a�b�ab.

If a is a neighbor of b, then

∑

i∈n(a)

∑

j∈n(b)

�i j =
∑

i∈n(a)\{b}

∑

j∈n(b)

�i j +
∑

j∈n(b)

� jb

=
∑

i∈n(a)\{b}

⎛

⎝�b�bi +
∑

j∈n(b)

�bj − 2

⎞

⎠+
∑

j∈n(b)

� jb

= �b

∑

i∈n(a)

�bi + (�a − 1)

⎛

⎝
∑

j∈n(b)

�bj − 2

⎞

⎠+
∑

j∈n(b)

� jb

= �b

∑

i∈n(a)

�bi +�a

∑

j∈n(b)

�aj −�a�b�ab + 2.

So the Theorem 1.2 is obtained, also the results of this theorem. 	

Obviously, this set of local sum rules is more local and simpler than Klein’s, so it can
simplify the computing of resistance distances, especially for some high symmetry
graphs, in the following section we will give some applications.

3 Specialized results for graphs with some degree of symmetry

In this part, when we say distance and diameter, they are in shortest-path meaning.

123



J Math Chem (2008) 44:405–417 411

Definition 3.1 ([19]) A distance regular graph is a regular connected graph with
degree � and diameter D, such that there are natural numbers

b0 = �, b1, . . . , bD−1; c1 = 1, c2, . . . , cD,

for each pair i, j ∈ V satisfying d(i, j) = k, we have

(i) ck = |n( j) ∩ nk−1(i)|, where nm(i) = {a ∈ V |d(a, i) = m}, 1 ≤ k ≤ D;
(ii) bk = |n( j) ∩ nk+1(i)|, 0 ≤ k ≤ D − 1.

The array {b0 = �, b1, . . . , bD−1; c1 = 1, c2, . . . , cD} is the intersection array.
For the high symmetry of the distance regular graphs, the resistance distances

between vertices depend only on the distance k between these vertices, so in the
following, we use �′ks instead of �i j ’s.

Theorem 3.1 Let G be a distance regular graph with intersection array {b0=�,

b1, . . . , bD−1; c1 = 1, c2, . . . , cD}. Then we have recursion relations as follows:

�k+1 = (ck + bk)�k − ck�k−1 − 2/N

bk
, k = 1, . . . , D − 1.

where �0 = 0,�1 = 2(N − 1)/N�.

Proof Obviously �0 = 0 , and by equality (2) in Sect. 1, we have N�/2�1 = N −1,
so �1 = 2(N − 1)/N�. Now for any i, j ∈ V with d(i, j) = k, |n(i) ∩ nk−1( j)| =
ck, |n(i)∩ nk+1( j)| = bk, |n(i)∩ nk( j)| = �− bk − ck . So by the local sum rules of
Theorem 2.2, we easily get

��k +��1 − ck�k−1 − bk�K+1 − (�− ck − bk)�k = 2;

�k+1 = (ck + bk)�k − ck�k−1 − 2/N

bk
.

	

Since the regular polyhedra are distance regular graphs, using the above theorem,

we easily compute the �k’s, see the following Table 1. The results are the same as in
Klein’s paper [16], but we get them from the general recursion relations for distance
regular graphs, it is much easier.

Now we consider using the Theorem 2.2 for less symmetric graphs, the first exam-
ple is the 14-vertex rhombic dodecahedron of Fig. 1. We also classify the resistance
distances by their distance k. It is easy to see that:

(i) For k = 1 and k = 3, there is only one class, denoted by �1 and �3, respectively;
(ii) If k = 2, there are three different classes, denoted by �13,�24, and �25 respec-

tively.

Then the local sum rules of Theorem 2.2 yield
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Table 1 Resistance distances for the regular polyhedra

Polyhedron N � d Intersection array �k

Tetrahedron 4 3 1 {3;1} �1 = 1/2
Octahedron 6 4 2 {4,1;1,4} �1 = 5/12, �2 = 1/2
Cube 8 3 3 {3,2,1;1,2,3} �1 = 7/12, �2 = 3/4,�3 = 5/6
Icosahedron 12 5 3 {5,2,1;1,2,5} �1 = 11/30, �2 = 7/15, �3 = 1/2
Dodecahedron 20 3 5 {3,2,1,1,1;1,1,1,2,3} �1 = 19/30, �2 = 9/10,�3 = 16/15

�4 = 17/15,�5 = 7/6

Fig. 1 The rhombic
dodecachedron

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�1 = 13/24
3�1 + 3�1 − 2�13 = 2
4�1 + 4�1 − 2�24 −�25 = 2
3�24 + 3�1 − 2�1 −�3 = 2
4�13 + 4�1 − 2�1 − 2�3 = 2

So we have

�1 = 13/24,�13 = 5/8,�24 = 3/4,�25 = 5/6,�3 = 19/24.

This is also an example in [16], but there �24,�25 are not given, and �3 = 21/32,
which is incorrect.

Now we consider the truncated Platonic solids (see Fig. 2, the vertex labels are
utilized in the following). The resistance distances for the truncated Platonic solids
have been considered in [20], but the results in there are not complete. It is clear that
the truncated Platonic solids are vertex transitive. So we only need to calculate �′a,bs,
where a is a fixed point (in Fig. 2, is denoted by ‘0′), b ∈ V . In the following, �a,b

simplified to �b. As above, here we also classify the resistance distances by their
distance k.

(1) The truncated tetrahedron(see Fig. 2a).
It is easy to see, for k = 1 and k = 3, there are two different classes, denoted by

�11,�12,�31, and �32, respectively; for k = 2, only one class, denoted by �2. So
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a

d e

b c

Fig. 2 The truncated platonic solids

by (2) and Theorem 2.2, we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2�11 +�12 = 2− 1/6
2�11 −�2 = 1/6
3�12 − 2�2 = 1/6
2�2 −�12 −�31 = 1/6
3�2 −�11 −�31 −�32 = 1/6.

Then we derive

�11 = 17/30,�12 = 21/30;�2 = 29/30;�31 = 32/30,�32 = 33/30.

(2) The truncated octahedron (the graph of boron nitride hetero-fullerenoid B12 N12)
(see Fig. 2b)

For this graph, we find

(i) For k=3, there are three different classes, denoted by �31,�32, and �33, respec-
tively;
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(ii) For k = 6, there is only one class, denoted by �6;
(iii) For other cases, that is k=1, 2, 4, 5, each has two different classes, denoted by

�k1,�k2, respectively. Also from Theorem 2.2 and (2), we can get the following
equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2�11 +�12 = 2− 1/12
3�11 −�21 −�22 = 1/12
3�12 − 2�22 = 1/12
3�21 − 2�11 −�33 = 1/12
3�22 −�12 −�31 −�33 = 1/12
3�31 − 2�22 −�41 = 1/12
3�32 −�22 − 2�41 = 1/12
3�33 − 2�22 −�42 = 1/12
3�41 −�32 −�33 −�51 = 1/12
3�42 −�33 − 2�52 = 1/12
3�51 − 2�41 −�6 = 1/12
3�52 −�41 −�42 −�6 = 1/12.

So we get

�11 = 625/1008,�12 = 682/1008,�21 = 810/1008,�22 = 981/1008,

�31 = 1081/1008,�33 = 1096/, 1008�32 = 1153/1008,�41 = 1197/1008,

�42 = 1242/1008,�51 = 1258/1008,�52 = 1273/1008,�6 = 1296/1008.

In [20], �6 is missing.
(3) The truncated cube(see Fig. 2c)
For this graph, we can find

(i) For k = 3, there are three different classes, denoted by �31,�32, and �33,
respectively;

(ii) For k = 2, k = 6, there is only one class, denoted by �2,�6;
(iii) For k = 1, 4, 5, each has two different classes, denoted by �k1,�k2, respec-

tively. So we get the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2�11 +�12 = 2− 1/12
2�11 −�2 = 1/12
3�12 − 2�2 = 1/12
3�2 −�11 −�31 −�33 = 1/12
2�2 −�12 −�32 = 1/12
3�31 −�2 −�33 −�41 = 1/12
3�32 −�2 −�41 −�42 = 1/12
3�41 −�32 −�31 −�42 = 1/12
3�42 −�32 −�41 −�52 = 1/12
2�42 −�33 −�51 = 1/12
3�51 − 2�42 −�6 = 1/12.
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Solving those equations, we get

�11 = 35/60,�12 = 45/60,�2 = 65/60,�31 = 77/60,

�33 = 78/60,�32 = 80/60,�41 = 83/60,

�42 = 87/60,�51 = 91/60,�52 = 93/60,�6 = 94/60.

For this graph, in [20], �6 is also missing.
(4) The truncated dodecahedron (see Fig. 2d)
The diameter of this graph is 10. After careful observation, we find

(i) For k = 3, there are three different classes, denoted by �31,�32, and �33,
respectively;

(ii) For k = 2, 10, there is only one class, denoted by �2,�10;
(iii) For k = 5, 7, each has four different classes, denoted by �k1−4;
(iv) For k = 1, 4, 6, 8, 9, each has two different classes, denoted by �k1,�k2, respec-

tively. So we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2�11 +�12 = 2− 1/30, 2�11 −�2 = 1/30
3�12 − 2�2 = 1/30
2�2 −�12 −�31 = 1/30
3�2 −�11 −�32 −�33 = 1/30
3�31 −�2 −�41 −�42 = 1/30
3�41 −�32 −�51 −�53 = 1/30
3�41 −�31 −�42 −�51 = 1/30
3�42 −�33 −�53 −�54 = 1/30
3�42 −�31 −�41 −�52 = 1/30
3�51 − 2�41 −�53 = 1/30
2�53 −�42 −�54 = 1/30
3�53 −�41 −�51 −�61 = 1/30
3�54 −�42 −�53 −�62 = 1/30
3�61 −�53 −�71 −�72 = 1/30
3�62 −�52 −�61 −�73 = 1/30
3�62 −�54 −�72 −�74 = 1/30
3�71 −�61 − 2�72 = 1/30
3�72 −�61 −�71 −�81 = 1/30
3�73 −�62 −�81 −�82 = 1/30
3�82 −�74 −�82 −�91 = 1/30
3�82 −�73 −�81 −�92 = 1/30
3�91 − 2�82 −�10 = 1/30.

Then we obtain

�11 = 267/450,�12 = 351/450,�2 = 519/450,�32 = 635/450

�33 = 640/450,�31 = 672/450,�41 = 731/450,�42 = 751/450

�51 = 755/450,�53 = 788/450,�54 = 810/450,�52 = 835/450
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�61 = 863/450,�62 = 876/450,�71 = 890/450,�72 = 896/450

�74 = 907/450,�73 = 915/450,�81 = 920/450,�82 = 934/450

�91 = 946/450,�92 = 952/450,�10 = 955/450.

(5) The truncated icosahedron (the graph of Buckminsterfullerene) (see Fig. 2e)
The diameter of this graph is 9. After careful observation, we find

(i) For k = 3, 4, 6, 7, there are three different classes, denoted by �k1,�k2,�k3 ;
(ii) For k = 9, there is only one class, denoted by �9;

(iii) For k = 5, there are four different classes, denoted by �k,1−4;
(iv) For k = 1, 2, 8, each has two different classes, denoted by �k1,�k2, respec-

tively.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2�11 +�12 = 2− 1/30, 3�12 − 2�21 = 1/30
3�11 −�21 −�22 = 1/30
3�21 −�12 −�31 −�32 = 1/30
3�21 −�11 −�31 −�33 = 1/30
2�22 −�11 −�32 = 1/30
3�31 − 2�21 −�41 = 1/30
2�32 −�21 −�43 = 1/30
3�33 −�21 −�42 −�41 = 1/30
3�41 −�32 −�33 −�52 = 1/30
3�41 −�31 −�42 −�54 = 1/30
3�42 −�33 −�41 −�51 = 1/30
3�42 −�32 −�42 −�53 = 1/30
2�51 −�43 −�62 = 1/30
3�51 −�42 −�61 −�63 = 1/30
3�52 −�41 −�53 −�61 = 1/30
3�61 −�54 −�62 −�63 = 1/30
3�61 −�52 −�51 −�71 = 1/30
3�62 −�51 −�61 −�73 = 1/30
3�63 −�51 −�61 −�72 = 1/30
3�72 −�62 −�71 −�81 = 1/30
3�72 −�63 −�71 −�82 = 1/30
3�9 − 2�82 −�81 = 1/30.

Then we get

�11 = 16273/25080,�12 = 16778/25080,�21 = 24749/25080

�22 = 23234/25080,�31 = 27274/25080,�32 = 29359/25080

�33 = 29864/25080,�41 = 31488/25080,�42 = 32519/25080

�43 = 33133/25080,�54 = 33835/25080,�52 = 34405/25080
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�53 = 34843/25080,�51 = 35369/25080,�61 = 36048/25080

�63 = 36704/25080,�62 = 36769/25080,�71 = 37534/25080

�72 = 37859/25080,�73 = 38054/25080,�81 = 38438/25080

�82 = 38503/25080,�9 = 38760/25080.

For this graph, in [20], �9 is missing.
We know the truncated polyhedra are all Archimedean polyhedra. Similarly for

other Archimedean polyhedra, such as cuboctahedron, icosidodecahedron, snub cube,
ect., we can also calculate the resistance distances by our method.
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9. I. Lukovits, S. Nikolić, N. Trinajstić, Int. J. Quantum Chem. 71, 217 (1999)
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